Copied to
clipboard

G = C522D4order 200 = 23·52

1st semidirect product of C52 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial

Aliases: C522D4, D101D5, C10.3D10, C2.3D52, (D5×C10)⋊1C2, C52(C5⋊D4), C526C42C2, (C5×C10).3C22, SmallGroup(200,24)

Series: Derived Chief Lower central Upper central

C1C5×C10 — C522D4
C1C5C52C5×C10D5×C10 — C522D4
C52C5×C10 — C522D4
C1C2

Generators and relations for C522D4
 G = < a,b,c,d | a5=b5=c4=d2=1, ab=ba, cac-1=a-1, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

10C2
10C2
2C5
2C5
5C22
5C22
25C4
2D5
2C10
2C10
2D5
10C10
10C10
25D4
5Dic5
5C2×C10
5C2×C10
5Dic5
10Dic5
10Dic5
2C5×D5
2C5×D5
5C5⋊D4
5C5⋊D4

Character table of C522D4

 class 12A2B2C45A5B5C5D5E5F5G5H10A10B10C10D10E10F10G10H10I10J10K10L10M10N10O10P
 size 1110105022224444222244441010101010101010
ρ111111111111111111111111111111    trivial
ρ2111-1-11111111111111111111-1-1-1-11    linear of order 2
ρ311-11-11111111111111111-1-1-11111-1    linear of order 2
ρ411-1-111111111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ52-200022222222-2-2-2-2-2-2-2-200000000    orthogonal lifted from D4
ρ622020-1-5/2-1+5/222-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/222-1-5/2-1-5/2-1+5/2-1+5/2000-1-5/2-1+5/2-1+5/2-1-5/20    orthogonal lifted from D5
ρ722-20022-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/222-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/21+5/21-5/21-5/200001+5/2    orthogonal lifted from D10
ρ8220-20-1+5/2-1-5/222-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/222-1+5/2-1+5/2-1-5/2-1-5/20001-5/21+5/21+5/21-5/20    orthogonal lifted from D10
ρ922-20022-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/222-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/21-5/21+5/21+5/200001-5/2    orthogonal lifted from D10
ρ1022020-1+5/2-1-5/222-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/222-1+5/2-1+5/2-1-5/2-1-5/2000-1+5/2-1-5/2-1-5/2-1+5/20    orthogonal lifted from D5
ρ112220022-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/222-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/20000-1+5/2    orthogonal lifted from D5
ρ12220-20-1-5/2-1+5/222-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/222-1-5/2-1-5/2-1+5/2-1+5/20001+5/21-5/21-5/21+5/20    orthogonal lifted from D10
ρ132220022-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/222-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/20000-1-5/2    orthogonal lifted from D5
ρ142-200022-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-2-21+5/21-5/21+5/21-5/21+5/21-5/2545ζ535253520000ζ545    complex lifted from C5⋊D4
ρ152-200022-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-2-21+5/21-5/21+5/21-5/21+5/21-5/2ζ5455352ζ53520000545    complex lifted from C5⋊D4
ρ162-200022-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-2-21-5/21+5/21-5/21+5/21-5/21+5/25352545ζ5450000ζ5352    complex lifted from C5⋊D4
ρ172-2000-1-5/2-1+5/222-1-5/2-1+5/2-1+5/2-1-5/21+5/21-5/2-2-21+5/21+5/21-5/21-5/20005352ζ545545ζ53520    complex lifted from C5⋊D4
ρ182-2000-1+5/2-1-5/222-1+5/2-1-5/2-1-5/2-1+5/21-5/21+5/2-2-21-5/21-5/21+5/21+5/2000ζ545ζ535253525450    complex lifted from C5⋊D4
ρ192-2000-1+5/2-1-5/222-1+5/2-1-5/2-1-5/2-1+5/21-5/21+5/2-2-21-5/21-5/21+5/21+5/20005455352ζ5352ζ5450    complex lifted from C5⋊D4
ρ202-200022-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-2-21-5/21+5/21-5/21+5/21-5/21+5/2ζ5352ζ54554500005352    complex lifted from C5⋊D4
ρ212-2000-1-5/2-1+5/222-1-5/2-1+5/2-1+5/2-1-5/21+5/21-5/2-2-21+5/21+5/21-5/21-5/2000ζ5352545ζ54553520    complex lifted from C5⋊D4
ρ2244000-1+5-1-5-1+5-1-5-13+5/2-13-5/2-1+5-1-5-1+5-1-53-5/2-1-13+5/200000000    orthogonal lifted from D52
ρ2344000-1-5-1+5-1-5-1+5-13-5/2-13+5/2-1-5-1+5-1-5-1+53+5/2-1-13-5/200000000    orthogonal lifted from D52
ρ2444000-1+5-1-5-1-5-1+53-5/2-13+5/2-1-1+5-1-5-1-5-1+5-13-5/23+5/2-100000000    orthogonal lifted from D52
ρ2544000-1-5-1+5-1+5-1-53+5/2-13-5/2-1-1-5-1+5-1+5-1-5-13+5/23-5/2-100000000    orthogonal lifted from D52
ρ264-4000-1-5-1+5-1-5-1+5-13-5/2-13+5/21+51-51+51-5-3-5/211-3+5/200000000    symplectic faithful, Schur index 2
ρ274-4000-1+5-1-5-1-5-1+53-5/2-13+5/2-11-51+51+51-51-3+5/2-3-5/2100000000    symplectic faithful, Schur index 2
ρ284-4000-1+5-1-5-1+5-1-5-13+5/2-13-5/21-51+51-51+5-3+5/211-3-5/200000000    symplectic faithful, Schur index 2
ρ294-4000-1-5-1+5-1+5-1-53+5/2-13-5/2-11+51-51-51+51-3-5/2-3+5/2100000000    symplectic faithful, Schur index 2

Smallest permutation representation of C522D4
On 40 points
Generators in S40
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 5 4 3 2)(6 10 9 8 7)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 35 34 33 32)(36 40 39 38 37)
(1 39 6 34)(2 38 7 33)(3 37 8 32)(4 36 9 31)(5 40 10 35)(11 29 16 24)(12 28 17 23)(13 27 18 22)(14 26 19 21)(15 30 20 25)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)

G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,5,4,3,2)(6,10,9,8,7)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,35,34,33,32)(36,40,39,38,37), (1,39,6,34)(2,38,7,33)(3,37,8,32)(4,36,9,31)(5,40,10,35)(11,29,16,24)(12,28,17,23)(13,27,18,22)(14,26,19,21)(15,30,20,25), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,5,4,3,2)(6,10,9,8,7)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,35,34,33,32)(36,40,39,38,37), (1,39,6,34)(2,38,7,33)(3,37,8,32)(4,36,9,31)(5,40,10,35)(11,29,16,24)(12,28,17,23)(13,27,18,22)(14,26,19,21)(15,30,20,25), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,5,4,3,2),(6,10,9,8,7),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,35,34,33,32),(36,40,39,38,37)], [(1,39,6,34),(2,38,7,33),(3,37,8,32),(4,36,9,31),(5,40,10,35),(11,29,16,24),(12,28,17,23),(13,27,18,22),(14,26,19,21),(15,30,20,25)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)]])

C522D4 is a maximal subgroup of   C52⋊D8  C52⋊SD16  D205D5  D10.9D10  C20⋊D10  D10.4D10  D5×C5⋊D4
C522D4 is a maximal quotient of   C522D8  D20.D5  C522Q16  D10⋊Dic5  C10.Dic10

Matrix representation of C522D4 in GL4(𝔽41) generated by

64000
1000
0010
0001
,
1000
0100
00040
00134
,
23600
211800
0001
0010
,
23600
351800
0001
0010
G:=sub<GL(4,GF(41))| [6,1,0,0,40,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,40,34],[23,21,0,0,6,18,0,0,0,0,0,1,0,0,1,0],[23,35,0,0,6,18,0,0,0,0,0,1,0,0,1,0] >;

C522D4 in GAP, Magma, Sage, TeX

C_5^2\rtimes_2D_4
% in TeX

G:=Group("C5^2:2D4");
// GroupNames label

G:=SmallGroup(200,24);
// by ID

G=gap.SmallGroup(200,24);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-5,61,328,4004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^4=d^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C522D4 in TeX
Character table of C522D4 in TeX

׿
×
𝔽